
MANAGEMENT OF CODE REVIEWER

RECOMMENDATION USING OPTIMIZATION

ALGORITHM, NSGA-III

Zaeem Anwaar and Wasi Haider Butt

Department of Computer and Software Engineering, College of Electrical and Mechanical Engineering (CEME),

National University of Sciences and Technology (NUST)

Islamabad, Pakistan

ABSTRACT

Code review is considered as efficient and effective practice to improve software quality, identify and remove defects

before integration. Code reviewers having right expertise, experience and apt amount of knowledge with the code being

reviewed leads to successful code processes, fewer bugs and less maintenance cost. With the growing size of distributed

development teams, picking suitable reviewers is a challenging task. However, due to less resources and shorter

deadlines, the management of code reviews and appropriate recommendation of code reviewers based on three objectives

consecutively is an ambitious task to be considered as aim of this research. This paper addresses the formulation for

managing and recommending code reviewers based on multi conflicting objectives (i.e., availability, expertise and

collaboration) simultaneously. Non-sorting genetic algorithm-III (NSGA-III) is used as optimization algorithm to find the

most suitable reviewers while keeping expertise and availability ratio high and less collaboration between reviewers and

developers. The results were implemented and validated on three (medium to large size) open-source projects named as

LibreOffice, Qt and Open-Stack. We calculated precision, recall, mean reciprocal rank (MRR), accuracy for all 3 projects

on average. The results from our proposed approach accurately recommended the code reviewers with the precision up to

80%, 86% of recall, 82% MRR and 84% accuracy by improving state-of-the-art. NSGA-III recommended the reviewers

in less execution time and better fitness values in comparison to NSGA-II in all experimental sets. The proposed

approach could be practical to Modern Code Review (MCR) in order to help developers while recommending suitable

code-reviewers in less time and resources to speed up the review process.

KEYWORDS

Code-Reviewer Recommendation, Modern Code Review, Software Development, Multi-Objective Algorithm, NSGA-III

1. INTRODUCTION

Software code review is an integral part of software development and has been in practice for more than three

decades. It involves identifying and fixing the defects i.e., logical errors or bugs in a software system, to

ensure code quality. A reviewer is requested to review the change and identify the issues with the change,

and then recommend further actions to the software developer responsible for the code (Asthana et al., 2019).

A series of meetings between the reviewer and the developer are taken place, to ensure a mutual

understanding of the change made and the review feedback. The drawback of this manual process of code

review is time-consuming and expensive; as the time, effort and experience of the reviewers are not

judiciously and efficiently utilized. The purpose is to get a code check-in the shortest possible time as the

author/company needs to release the new version of the modified code as early as possible. Thus, a suitable

code reviewer is required to serve the purpose of code review. Such a reviewer should possess thorough

knowledge, experience and expertise needed for the job and shouldn’t be over-committed as well. Only, the

reviewer with the requisite expertise and appropriate time may contribute toward efficient examination of the

code changes and defects (Chouchen, Ouni, Mkaouer, Kula, & Inoue, 2021).

Over the period, the manual process of assigning a reviewer has evolved into an informal, fully

automated, structured and documented approach. It has progressed to a lightweight, quicker and tool-based

process named Modern Code Review (Balachandran, 2013). MCR is also known as change-based code

review. MCR is a collaborative, quicker and automated approach that ensures that both author and code

reviewer follow the standards of code review in a literal manner. Here, the reviewer is assigned to review a

specific code, based on certain logic and certain credentials, in an automated manner. Some of the benefits of

choosing the reviewer in an automated manner are: 1) Reviewer is automatically assigned as per certain

credentials in a much shorter time frame without compromising other projects. 2) Human factor / biases

which may result in a selection of inappropriate reviewers is eliminated. 3) All the reviewers share the

optimized load. 4) The selection of the right reviewer (as-per requisite skills, experience and commitment)

enhances the quality of the review (Chouchen et al., 2021), (Balachandran, 2013).

This paper proposes to articulate the selection of peer code reviewers as a multi-objective problem using

an optimization algorithm ‘NSGA-III’ (Bhesdadiya, Trivedi, Jangir, Jangir, & Kumar, 2016), (Deb, 2014).

Multi-objective optimization is defined as “to find the trade-off balanced optimization between more than

one objective”. Usually, it is difficult to find such a solution that provides multi-objective optimization

because the objectives in the problem are mostly conflicting. To find and propose such solutions, mostly

Genetic Algorithms are used. These algorithms consider certain credentials i.e., reviewer’s profile,

experience, workload, expertise and commitment status, etc. to recommend reviewers. These credentials are

termed ‘Objectives’ and an algorithm may use a single objective, may incorporate multiple objectives, or

may utilize many objectives to suggest a reviewer. For example, an algorithm considering only one objective

(i.e., experience) may be termed a single objective utilization algorithm. The algorithm that takes into

account two or three objectives is termed a multi-objective optimization algorithm and an algorithm taking

into account more than three objectives, while deciding on a reviewer, is termed a many-objective algorithm.

The research motivation is to recommend/choose the right reviewers for the code review process more

quickly and accurately to save time and resources. Moreover, we validated our approach on 3 open-source

projects to confirm its efficiency and accuracy to comparison to the state of the art. The major objectives of

the research are as follows: 1) To reform and organize 3 different open-source project data-sets, that are to be

used for Code reviewer recommendation (CRR). 2) To perform a detailed literature review of the recent

research on CRR. 3) Explore Multi-objective optimization search algorithms. 4) Propose an approach that

navigates between three different proportions/credentials by providing multiple non-dominant peer reviewer

recommendations instead of one solution. 5) Analyzing and validating the precision, recall, MRR and

Accuracy of the proposed approach. 6) Comparison of the results with state-of-the-art.

The rest of the paper is followed as; Section II presents the literature of the related studies. Section III

proposes the approach used in the research. Section IV discuss and presents the results. Lastly the paper is

concluded.

2. LITERATURE REVIEW

To highlight some related researches, existing work or research that has been done concerning the proposed

domain by worthy researchers is analyzed.

Authors (Chouchen et al., 2021) introduced multi-objective search-based approach ‘Who-Review’ to find

the best suitable reviewers for code changing using IBEA (Indicator-Based Evolutionary Algorithm). The

recommendation was based on two factors; experience and workload on reviewers. Validation on four

open-source projects resulted in an average precision of 68% and recall of 77%.

Researchers (Thongtanunam et al., 2015) proposed ‘Rev-Finder’ to help developers in finding appropriate

reviewers using a file-location based approach. Recommendation was based on finding similarity with the

previously reviewed files. The approach was evaluated on 4 different data sets that resulted in accurately

recommended 79% of reviews.

In (Balachandran, 2013), an automatic static analysis approach was introduced by authors named ‘Review

Bot’. It uses various static analysis tools as output to automate the process of checking coding standard

violations. A user study was taken into account to validate the tool. The tool also recommended reviewers

based on change history of the code. Results showed recommendation accuracy better than the method based

on file change history.

‘RevRec’ (Ouni, Kula, & Inoue, 2016) a search-based approach to suggested reviewers and also to

support in decision making for code change submitter was proposed by authors. Genetic algorithm was used

to perform the research aim based on their expertise and past collaborations. Authors evaluated the approach

on 3 opensource projects and resulted in 59% of precision and 74% of recall.

The most recent and relevant literature to our approach is presented in (Rebai, Amich, Molaei, Kessentini,

& Kazman, 2020). The authors formulated the recommendation of code reviewers as a multi-objective search

problem to balance the conflicting objectives of expertise, availability, and history of collaborations. Authors

used NSGA-II genetic algorithm in their study. 9 open-source projects were used to validate their study. The

motivation for our approach is gathered from this study (Rebai et al., 2020) where we have updated the

optimization algorithm by using NSGA-III. The authors from an open-source framework ‘Pymoo’ (Blank

& Deb, 2020) for multi-objective optimization in python (Deb & Jain, 2013), (Jain & Deb, 2013) claim that

NSGA-II is not much better in optimization of multi-objective (more than two objectives) as compare to

NSGA-III (Blank, Deb, & Roy, 2019).

To deal with a large number of possible reviewers for multiple pull requests in terms of multi-objective

context is a problem that is under-studied in the research literature. This management process requires

handling multiple competing criteria including expertise, availability and previous collaborations with the

owners and reviewers.

3. PROPOSED METHODOLOGY

In this section, the recommendation of a most appropriate set of reviewers is presented for pull requests to be

reviewed as a framework/approach by using the NSGA-III optimization algorithm. The proposed approach

consists of data collection, data pre-processing, main components of the approach, detailed knowledge about

NSGA-III (i.e., high-level pseudo-code) algorithm, solution representation, fitness functions and change

operators. The high-level diagram for proposed approach is shown in Figure 1. The methodology starts with a

project’s new pull request to be reviewed is received. The data is collected from the project in terms of its

previous pull request information (newly opened, under-review, closed), reviewers’ and developers’

information, etc.

Figure 1. Proposed Approach

3.1 Data Pre-Processing

The data is collected from the link shared by the authors in the literature available at Mining Code Review

Repositories (kin-y.github.io) in SQL format. None of the literature shared the data in CSV format. The

gathered SQL data was converted into CSV format as it is faster to handle, a standard format and easy to

parse. Removal of Not-a-Number (NaN) values from the data was performed by replacing it with zero. The

purpose of doing NaN removal was because optimization algorithm’s performance and accuracy can’t be

made sure on NaN data. Also, the data was normalized by doing Min-Max scaling from 0 to 1 so that any

outliers from the data-set should be removed. The pre-processed data in CSV format is shared at

https://drive.google.com/file/d/1CiZWHc0z_JFZ_Tg7pewTfNZb91o9XzIg/view?usp=sharing as shown in

Table 1.

Table 1. Project’s Information

Project

name

Repository link Project Duration Num of

pull

request

(Closed)

Num of pull

request

(New-Past 7

days)

Num of

reviewers

LibreOffice https://git.libreoffice.org/core 07/2014~12/2021 28030 12 934

Qt https://code.qt.io/cgit/qt/qtbase.git/ 05/2011~11/2021 115888 25 1437

OpenStack https://opendev.org/openstack 07/2011~12/2021 173749 52 5091

3.2 Code Reviewer Recommendation Framework

This section presents the framework in two steps. Step 1 explains the data extraction from the CSV and step 2

explains the optimization algorithm i.e., NSGA-III and fitness functions (Rebai et al., 2020).

3.2.1 Data Extraction

Three type of matrix formation is implemented to extract data that is required in our approach.

Reviewer-Expertise Matrix, Reviewer-Developer Matrix and Reviewer Availability Matrix.

Reviewer-Expertise Matrix represents the expertise of the reviewer based on previous commits that has been

reviewed by reviewer. The number of times a reviewer is familiar/reviewed a same type of file is counted as

his/her expertise. Reviewer-Developer is basically a collaboration matrix for the times when both

collaborated on the same files i.e., closed pull requests. Lastly the reviewer availability matrix is formed

according to the workload/files being reviewed on current time by the reviewer.

3.2.2 Fitness Functions

Since we are working on a multi-objective optimization so in our approach, we intend to provide
optimization on three fitness functions. These three objective functions are Expertise, Availability, and
Collaboration. Availability is defined as the inverse of approximated wait until reviewers from their
workload (already working on a set of file S) become available. Expertise is estimated by the rank of a
reviewer in the set of pool between other reviewers for reviewing a file. Lastly, Collaboration is the
summation of all associates between the recommended reviewers chosen to work with a selected set of
developers.

We aim to maximize the formulation of expertise and availability of the reviewers while minimizing the
fitness function of collaboration due to socio-technical aspects of reviewers and developers in the hope to
reduce human biases. The fitness functions are kept the same to literature studies so that a healthy
comparison could be brought out of it. The formulas for calculating fitness functions can be explored at
(Rebai et al., 2020). All these three-fitness function first values would be collectively passed to NSGA-III a
best solution from all of them. The high-level pseudo-code of NSGA-III is available at (Bhesdadiya et al.,
2016). The proposed approach is implemented in Python Language on Jupiter Lab (3.0) using Pymoo Library
(Blank & Deb, 2020) in our case. While defining problem and Pymoo algorithm library, the change or
genetic operators are used. We applied Das-Dennis (Bhesdadiya et al., 2016) approach to define reference
points. The rest of the genetic operator used in results are explained in Table 2. The literature results are
computed using random selection (to compare with state of the art), we have used tournament selection in
one experiment (to give a new horizon for future comparison). We used ‘Uniform (‘real ux’, ‘bin ux’, ‘int
ux’) Crossover’ and ‘Polynomial (‘real pm’, ‘int pm’) Mutation’ to explore and exploit the search space.

https://code.qt.io/cgit/qt/qtbase.git/
https://opendev.org/openstack

Table 2. Experimental Genetic Operators

Experiment

Number

Pop

Size

Selection

Operator

Crossover

Operator

Crossover

Probability

Mutation

Operator

Mutation

rate

Number of

Generation

Exp. 1 50 Random Uniform 0.5 Polynomial 0.01 500

Exp. 2 50 Random Uniform 0.6 Polynomial 0.1 450

Exp. 3 100 Random Uniform 0.8 Polynomial 0.2 550

Exp. 4 200 Random Uniform 0.5 Polynomial 0.1 550

Exp. 5 200 Random Uniform 0.8 Polynomial 0.05 600

Exp. 6 100 Tournament Uniform 0.85 Polynomial 0.2 500

4. RESULTS AND DISCUSSION

Precision, recall, Mean Reciprocal Rank (MRR) and average accuracy were calculated to compare our results

with state-of-the-art.

 (1) (2)
In equation (1) and (2), TP (True Positive) corresponds to the number of top-k reviewers recommended

by the approach and also actual reviewers. FP (False Positive) corresponds to the number of top-k reviewers

recommended by the approach, but not actual reviewers; FN (False Negative) corresponds to the number of

actual reviewers, that are not among the top-k reviewers recommended by the approach.TN (True Negative)

corresponds to the number of not actual reviewers, that are also not among the top-k reviewers recommended

by the approach.

MRR (Mean Reciprocal Rank): The average rank of correct reviewers in the recommendation list. Given

a reviewers recommendation lists R, the score MRR is calculated with the help of equation (3).

 (3)

where rank(r) is the rank score of the first reviewer in the recommendation list r. The higher is the MRR

score, the better is the recommendation rank approach.

Average Accuracy of Projects: The projects accuracy is determined as average accuracy in terms of

number of experiments performed in that project. The average accuracy Equation. (4) is determined as:

 (4)

Where E1 is the accuracy of experiment 1, E2 is the accuracy of experiment 2 till last Experiment. The N

is the total number of Experiments used in a project.

The efficiency and precision to identify relevant code reviewers by using of our proposed approach i.e.,

NSGA-III is confirmed on pull requests from 3 different projects are resulted in table III IV and figure no 2

& 3. Tables 3 and 4 shows the precision and recall in context to every experiment result separately. For

example, LibreOffice has a precision ranging from 51% to 67% for all experiments. It has a recall range from

52% to 75%. Qt project has precision range of 50% to 69% and recall rate ranging from 58% to 73%.

Whereas Open-Stack project has the highest precision value of 80% and recall ranging from 69-86%. Due to

large number of reviewers in the projects (i.e., Qt, LibreOffice) the precision rate of 50% or 51% in projects

could also be considered acceptable. Also, some of the highest recall scores are obtained in Open-Stack as

some pull request require more than one code reviewer. The highlighted/bold results in both the tables are the

best ones identified.

Table 3. Precision Comparison with literature

Project

Name

Experiment

number

Precision@Exp.

Proposed

Approach

(NSGA-III)

AEC

(NSGA-II)

RevRec

(GA)

Who

Review

(IBEA)

RevFinder ReviewBot

LibreOffice

Exp. 1 0.64 N/A 0.52 0.61 0.48 0.38

Exp. 2 0.59 N/A 0.45 0.54 0.4 0.36

Exp. 3 0.57 N/A 0.50 0.56 0.42 0.40

Exp. 4 0.52 N/A 0.41 0.53 0.32 0.32

Exp. 5 0.51 N/A 0.39 0.46 0.3 0.23

Exp. 6 0.67 N/A N/A N/A N/A N/A

Qt

Exp. 1 0.66 0.58 0.49 0.58 0.3 0.22

Exp. 2 0.62 0.51 0.42 0.53 0.27 0.19

Exp. 3 0.57 0.54 0.45 0.55 0.29 0.13

Exp. 4 0.55 0.52 0.41 0.43 0.21 0.10

Exp. 5 0.50 0.46 0.34 0.48 0.16 0.09

Exp. 6 0.69 N/A N/A N/A N/A N/A

OpenStack

Exp. 1 0.74 0.70 0.59 0.62 0.32 0.24

Exp. 2 0.69 0.64 0.57 0.55 0.27 0.2

Exp. 3 0.67 0.65 0.51 0.59 0.30 0.22

Exp. 4 0.63 0.63 0.43 0.54 0.25 0.16

Exp. 5 0.57 0.54 0.46 0.48 0.21 0.11

Exp. 6 0.80 N/A N/A N/A N/A N/A

Table 4. Recall Comparison with literature

Project

Name

Experiment

number

Recall@Exp.

Proposed

Approach

(NSGA-III)

AEC

(NSGA-

II)

RevRec

(GA)

Who

Review

(IBEA)

RevFinder ReviewBot

LibreOffice

Exp. 1 0.67 N/A 0.34 0.48 0.32 0.18

Exp. 2 0.62 N/A 0.48 0.52 0.38 0.22

Exp. 3 0.59 N/A 0.57 0.56 0.42 0.20

Exp. 4 0.59 N/A 0.58 0.61 0.45 0.31

Exp. 5 0.69 N/A 0.59 0.68 0.49 0.38

Exp. 6 0.75 N/A N/A N/A N/A N/A

Qt

Exp. 1 0.58 0.56 0.41 0.44 0.14 0.09

Exp. 2 0.62 0.60 0.50 0.45 0.27 0.16

Exp. 3 0.68 0.66 0.55 0.58 0.30 0.20

Exp. 4 0.72 0.68 0.59 0.60 0.35 0.24

Exp. 5 0.73 0.70 0.65 0.64 0.43 0.30

Exp. 6 0.67 N/A N/A N/A N/A N/A

OpenStack

Exp. 1 0.69 0.59 0.31 0.46 0.15 0.12

Exp. 2 0.70 0.68 0.39 0.49 0.29 0.2

Exp. 3 0.78 0.76 0.52 0.59 0.37 0.32

Exp. 4 0.80 0.75 0.54 0.60 0.46 0.39

Exp. 5 0.82 0.80 0.66 0.63 0.50 0.41

Exp. 6 0.86 N/A N/A N/A N/A N/A

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Proposed Approach (NSGA-III)

AEC (NSGA-II)

RevRec

WhoReview

RevFinder

ReviewBot

OpenStack

Qt

LibreOffice

Figure 2. Mean Reciprocal Rank Chart

Figure 2 shows the MRR values that NSGA-III was able to efficiently rate the recommended code

reviewers. The best resulted solution of the last population obtained in the last iteration of GA are copied in a

single pool. Then, the rank of each reviewer corresponds to his frequency count in the pool. That is,

reviewers that are recommended in many solutions are ranked first. The proposed approach shows the MRR

values better than all other presented in literature. LibreOffice came up with 70%, Qt with 69% and

Open-Stack with highest 82% MRR scores. The efficiency for ranking the reviewers is measured by this

parameter so the outcomes of MRR are very important. Additionally, it is one of the main motivations of this

proposed approach as ranking is directly related to availability and collaboration of code reviewers.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Prposed Approach (NSGA-III

AEC (NSGA-II)

RevRec

WhoReview

RevFinder

ReviewBot

OpenStack

Qt

LibreOffice

Figure 3. Average Accuracy Chart

Figure 3 presents the average accuracy of our approach on experiments. The accuracy of each experiment

is calculated separately and then average of accuracy’s is calculated as discussed in equations 9 and 10.

LibreOffice came up with 72%, Qt with 71% and Open-Stack with highest 84% Average Accuracy scores

which are better than all others approach.

Most importantly our proposed technique doesn’t have a bias towards the projects that are used for

validation as we used average values of mean reciprocal rank and accuracy. Out of 3 open-source projects,

our proposed approach performed well on Open-Stack pull requests. The accuracy, MRR, precision and

recall of the project was good in comparison to other projects.

5. CONCLUSION

In this research, we have proposed a multi objectives problem to manage and recommend code reviewers by

adopting an optimization algorithm that is NSGA-III. The purpose is to recommend the best trade-off

reviewers between three conflicting objectives i.e., maximizing the availability and expertise of reviewers

and minimizing the collaboration between developers and reviewers to lessen the human biases factor. We

implemented and evaluated our approach on three (medium to large size) open-source projects named as

LibreOffice, Qt and Open-Stack. We calculated efficiency on our approach by finding precision, recall,

MRR, accuracy for all 3 projects on average. The results from our proposed approach accurately

recommended the code reviewers with the precision up to 80%, 86% of recall, 82% mean reciprocal rank and

84% average accuracy by improving state-of-the-art. The proposed approach could be practical to MCR in

order to help developers while recommending suitable code-reviewers in less time and resources to speed up

the review process. This research highlighted the importance of managing code reviews to reduce delays in

review process in less time and resources while confirming high expertise and availability as much as

possible.

REFERENCES

Asthana, S., Kumar, R., Bhagwan, R., Bird, C., Bansal, C., Maddila, C., ... Ashok, B. (2019). WhoDo: automating

reviewer suggestions at scale. Paper presented at the Proceedings of the 2019 27th ACM Joint Meeting on European

Software Engineering Conference and Symposium on the Foundations of Software Engineering.

Balachandran, V. (2013). Reducing human effort and improving quality in peer code reviews using automatic static

analysis and reviewer recommendation. Paper presented at the 2013 35th International Conference on Software

Engineering (ICSE).

Bhesdadiya, R. H., Trivedi, I. N., Jangir, P., Jangir, N., & Kumar, A. J. C. E. (2016). An NSGA-III algorithm for solving

multi-objective economic/environmental dispatch problem. 3(1), 1269383.

Blank, J., Deb, K., & Roy, P. C. (2019). Investigating the normalization procedure of NSGA-III. Paper presented at the

International Conference on Evolutionary Multi-Criterion Optimization.

Blank, J., & Deb, K. J. I. A. (2020). Pymoo: Multi-objective optimization in python. 8, 89497-89509.

Chouchen, M., Ouni, A., Mkaouer, M. W., Kula, R. G., & Inoue, K. J. A. S. C. (2021). WhoReview: A multi-objective

search-based approach for code reviewers recommendation in modern code review. 100, 106908.

Deb, K. (2014). Multi-objective optimization. In Search methodologies (pp. 403-449): Springer.

Deb, K., & Jain, H. J. I. t. o. e. c. (2013). An evolutionary many-objective optimization algorithm using

reference-point-based nondominated sorting approach, part I: solving problems with box constraints. 18(4), 577-601.

Jain, H., & Deb, K. J. I. T. o. e. c. (2013). An evolutionary many-objective optimization algorithm using reference-point

based nondominated sorting approach, part II: Handling constraints and extending to an adaptive approach. 18(4),

602-622.

Ouni, A., Kula, R. G., & Inoue, K. (2016). Search-based peer reviewers recommendation in modern code review. Paper

presented at the 2016 IEEE International Conference on Software Maintenance and Evolution (ICSME).

Rebai, S., Amich, A., Molaei, S., Kessentini, M., & Kazman, R. J. A. S. E. (2020). Multi-objective code reviewer

recommendations: balancing expertise, availability and collaborations. 27(3), 301-328.

Thongtanunam, P., Tantithamthavorn, C., Kula, R. G., Yoshida, N., Iida, H., & Matsumoto, K.-i. (2015). Who should

review my code? a file location-based code-reviewer recommendation approach for modern code review. Paper

presented at the 2015 IEEE 22nd International Conference on Software Analysis, Evolution, and Reengineering

(SANER).

